МИНИАТЮРНЫЕ ГАЗОТУРБИННЫЕ ДВИГАТЕЛИ

Александр Владимирович Ефимов
Равиль Зямилевич Нигматулин
Игорь Никифорович Гайдамака
Михаил Яковлевич Иванов
Олег Иванович Иванов
Николай Иванович Огарко

Еще недавно под "малоразмерным" газотурбинным двигателем подразумевалось устройство, способное уместиться под капотом легкового автомобиля. Но процесс миниатюризации ГТД на этом не остановился. Несмотря на огромные трудности, с которыми пришлось столкнуться разработчикам, размеры и масса самых маленьких "газотурбинников" продолжали сокращаться.

Так, еще в 1973 г. был создан предназначенный для авиамоделей миниатюрный ГТД TDJ-76 "Мини Мамба". При собственной массе 6,5 кг это чудо техники обладало тягой 25 кгс, его диаметр не превышал 150 мм, а длина - 400 мм. Зато частота вращения вала для обеспечения требуемой величины тяги была доведена до 96000 об/мин.

Турбина TDJ-76 выполнялась фрезерованием и последующей гибкой из стального диска толщиной 2,5 мм, при этом лопатки были плоскими, непрофилированными. Камера сгорания, занимавшая большую часть объема двигателя, изготовлялась из жаропрочной стали. В ней применялась довольно сложная система подачи топлива с предварительным его испарением; топливо использовалось также для отвода тепла от подшипников.

Впоследствии был создан целый ряд аналогичных двигателей, отличавшихся тягой и размерами. Так, были разработаны и изготовлены ГТД со следующими параметрами (первое число - тяга в ньютонах, второе - диаметр крыльчатки компрессора в миллиметрах): 70/66, 80/76, 90/88, 100/90. Модели с такими двигателями получили относительно широкое распространение.
И все же наследники "Мини Мамбы" оказались великоваты. Энтузиасты малоразмерных ГТД замахнулись на разработку двигателей, способных обеспечить полет действительно миниатюрных летательных аппаратов, не превосходящих по размерам человеческую ладонь! В 2000 г. в печати появились сообщения о том, что в Массачусетском технологическом университете создают малоразмерный ГТД с максимальным диаметром корпуса 12 мм и диаметром рабочих колес, не превышающим 8 мм. Аналогичный проект попытались реализовать Токийский университет совместно с ЦИАМ им. П.И. Баранова. При разработке использовался опыт проектирования микро-ГТД FD-3 длиной 260 мм и диаметром 110 мм, предназначавшегося для беспилотных летательных аппаратов.

В качестве двигателя-прототипа был избран FD-3. Но ограничения технологического характера вполне способны перечеркнуть вывод о реальности создания столь миниатюрного газотурбинника. С самого начала предполагалось, что основные узлы микро-ГТД будут изготовляться из керамики. Но все, что способна дать технология MEMS, - это плоские лопатки постоянной толщины, выполненные заодно с диском (своеобразные "блиски") и цилиндрические отверстия в керамических стенках.
В связи с этим был сделан вывод о необходимости промежуточного шага, каковым стало изготовление двигателя, впятеро большего по основным размерам, нежели описанный. Диаметр ротора такого двигателя, как нетрудно определить, был принят равным 40 мм.

Оптимизировав параметры компрессора и турбины, для микро-ГТД с диаметром ротора 40 мм удалось добиться приемлемых значений к.п.д. компрессора и турбины (около 0,7). В дальнейшем в Токийском университете были проведены испытания компрессора с диаметром ротора 40 мм. В заключение отметим что создание микро-ГТД с диаметром ротора 40 мм технически осуществимо, и необходимо доработать технологию MEMS. Применение микро-ГТД для создания тяги вряд ли рационально, и наиболее вероятным можно считать использование описанного двигателя в качестве привода миниатюрного генератора электрической энергии.

Существует ли предел миниатюризации? На этот вопрос, скорее всего, нужно ответить - да, существует.

История газотурбинных двигателей уходит корнями в начало ХХ века. В 1903 году норвежский изобретатель Агидус Эллинг первым создал работающий двигатель с газовой турбиной мощностью 11 л.с. (двигатель самолета братьев Райт, который поднялся в воздух в том же году, имел мощность 12 л.с.). Спустя несколько лет Чарльз Кёртис, изобретатель паровой турбины, подал патентную заявку, в которой описал конструкцию газовой турбины, и в 1914-м получил патент. В 1918 году фирма General Electric (GE), основанная Томасом Эдисоном в середине 1870-х, начала работы над турбонагнетателями для авиационных двигателей, а спустя два десятилетия реактивными авиадвигателями стало заниматься газотурбинное подразделение фирмы (которое сейчас считается одним из крупнейших в мире в своей области).

В 1930 году изобретатель и офицер Королевских ВВС Великобритании Фрэнк Уиттл разработал и запатентовал первый газотурбинный двигатель для использования в качестве реактивного движителя. Пока Уиттл занимался решением технических проблем, связанных с конструкцией двигателя, немец Ганс фон Охайн сумел первым создать и испытать в 1939 году самолет с реактивным двигателем.

От авиации до энергетики

Во второй половине XX века газотурбинные двигатели стали основой современной авиации. Конечно, двигатели совершенствовались и увеличивались в размерах. Сегодня рекорд принадлежит двигателям серии GE90, которые устанавливают на Boeing 777. Диаметр вентиляторов этого двигателя 3,4 м, в нем установлен компрессор с 22 лопатками, а его тяга составляет 52 000 кг (и более 57 600 кг при испытаниях), что в 10 000 раз больше, чем мощность двигателя братьев Райт, которым они пользовались 100 лет назад.

Современные газотурбинные двигатели (ГТД) служат не только в авиации, но и в энергетике, где их используют для производства электроэнергии. Горячие газы, полученные в результате сжигания природного газа в камере сгорания, проходят через турбину, вращают ее и приводят в движение вал генератора. ГТД широко используются на электростанциях во время пиковых нагрузок. По размерам и мощности такие ГТД значительно превосходят своих авиационных братьев. Например, передовой ГТД Siemens SGT5−8000H удерживает мировой рекорд — масса этого гиганта 440 т, он может выдавать 340 МВт в простом цикле и почти в два раза больше в комбинированном. КПД этого двигателя составляет почти 40%, а в комбинированном цикле — около 60%. Помимо самолетов и электростанций ГТД применяются и в танках, кораблях, тепловозах, локомотивах, а также используются в качестве вспомогательных генераторов.


Что такое MEMS. Эта аббревиатура означает Micro-Electro- Mechanical Systems — микроэлектромеханические системы. MEMS — это сочетание механических элементов, датчиков, приводов, собранных на кремниевой подложке, с электронными схемами. И механика и электроника изготавливаются с помощью стандартных технологий микроэлектронной промышленности. Такой подход дает возможность получать уникальные устройства, сочетающие вычислительные возможности электроники с чувствительностью механических сенсоров, в микроскопических размерах — это готовое изделие на одном чипе. Технологии микроэлектронной промышленности позволяют выпускать подобные устройства большими сериями, что весьма положительно сказывается на надежности и цене. MEMS широко применяются в быту — в частности, именно к этому классу относятся акселерометры (датчики ускорений), крупнейшим потребителем которых является современная автомобильная промышленность: именно эти датчики подают сигналы для раскрытия подушек безопасности при столкновениях. Матрицы DLP-проекторов, твердотельные гироскопы и пьезоголовки принтеров — типичные представители MEMS.

От большого к малому

Новые технологии позволяют создавать двигатели не только гигантских, но и маленьких (и даже очень маленьких) размеров. Японская фирма IHI Aerospace производит переносной газотурбинный генератор Dynajet 2.6 мощностью 2,6 кВт и массой 67 кг. Впрочем, это далеко не предел — двигатель, созданный Швейцарским федеральным технологическим институтом (ETH Zurich), имеет размер всего несколько сантиметров и может генерировать почти 100 Вт электроэнергии на протяжении нескольких дней. Но дальше всех в направлении миниатюризации зашли исследователи Массачусетского технологического института (MIT), которые разработали газотурбинный двигатель размером всего около 1 мм.

Несмотря на столь внушительную разницу в размерах между таким гигантом, как GE90, и миллиметровым двигателем MIT, при ближайшем рассмотрении оказывается, что у них есть очень много общего. По конструкции они похожи: компрессор, камера сгорания и турбина, которая приводится в движение струей продуктов сгорания. Топливо впрыскивается в поток на выходе из компрессора, смешивается с воздухом, сгорает и вращает турбину, которая приводит в движение компрессор и генератор. Однако, разумеется, создание столь малого газотурбинного двигателя ставит перед конструкторами множество задач, с которыми не приходится сталкиваться создателям традиционных ГТД.


Микротурбинщики

В середине 1990-х в Массачусетском технологическом институте группа исследователей начала работать над проектом по микро-ГТД. «Я задумался над вопросом: если большой ГТД может обеспечивать электричеством целый город, почему нельзя сделать очень маленький двигатель, который бы обеспечил электрические потребности одного человека? — вспоминает Алан Эпштейн, профессор MIT и руководитель исследовательской группы. — А цена устройств MEMS (микроэлектромеханических систем) сейчас не слишком высока, так что себестоимость энергии такой персональной электростанции может быть сравнима с аналогичным параметром большого ГТД ($0,3−0,5 за 1 Вт)».


Разработанный в Швейцарском федеральном технологическом институте (ETH) миниатюрный газотурбинный двигатель построен по классической схеме с центробежным компрессором и осевой турбиной (схема далее).

Микро-ГТД состоит из тех же принципиальных элементов, что и его «большие братья», но сами размеры требуют принципиально других подходов и технологий. По словам Эпштейна, многие вопросы имеют такой же принципиальный характер — компоновка, механические нагрузки, вопросы коррозии. Однако в некоторых отношениях разработка микро-ГТД проще — например, микроскопические валы очень жесткие на изгиб, что помогает избавиться от традиционной проблемы изгиба вала у больших двигателей. Тепловые перепады при таких размерах не представляют большой угрозы, отпадает также необходимость ухода и ремонта (микро-ГТД неремонтопригоден, его просто заменяют новым). А в некоторых — сложнее: «Две наши самые большие проблемы — это влияние точности изготовления на эксплуатационные качества пары ‘вал-подшипник", а также поиск компромисса между требованиями к конструкции (термодинамика, сгорание, нагрузки, гидродинамика и электромеханика) и особенностями технологии изготовления двигателя. Это и по сей день остается нашим важнейшим вопросом».


Двигатель имеет диаметр всего несколько сантиметров и способен генерировать до 100 Вт мощности на валу. Такой полностью автономный источник электроэнергии будет весьма полезен, а в некоторых случаях совершенно незаменим.

«Хотя детали все те же самые, технология изготовления микро-ГТД, естественно, совершенно иная, она основана на технологиях полупроводниковой промышленности. С помощью фотолитографии можно создавать детали и узлы размерами от 1 до 10 000 микрон с высокой точностью, причем серийно, — объясняет профессор Эпштейн. — Детали вытравливаются из кремниевых монокристаллических пластин толщиной 0,5−1 мм и диаметром 100−300 мм, потом их склеивают вместе и получают пакет с несколькими готовыми двигателями. При необходимости пакет разрезают на кусочки и получают отдельные двигатели. Сами двигатели могут быть различного размера — сверху нас ограничивает не литография, а скорее глубина и точность травления. Для малых размеров, меньше 1 мм, основным ограничением является вязкость воздуха, которая резко отрицательно влияет на характеристики двигателя». В один пакет могут войти десятки или даже сотни микродвигателей. В идеале создание всех устройств из пакета происходит параллельно, что приводит к самому главному преимуществу такой технологии — низкой себестоимости готового изделия. «Подобные двигатели в будущем можно будет изготавливать точно таким же образом, как электронные чипы и автомобильные датчики», — говорит Эпштейн.


Газотурбинный двигатель, разработанный в MIT, состоит из центробежного компрессора и радиальной турбины с роторами диаметром 8 и 6 мм соответственно. На диаграмме ниже показана схема одного из первых прототипов двигателя. Сжатый компрессором воздух проходит по каналам, проложенным на внешней поверхности камеры сгорания, охлаждая ее и забирая тепло, что увеличивает эффективность и уменьшает температуру внешних стенок ГТД. Роторы поддерживаются радиальными пневмоподшипниками и гидростатическими упорными подшипниками осевого вала. Последние, вместе с уравновешивающим поршнем, принимают на себе осевые нагрузки. Запуск двигателя производится с помощью сжатого воздуха от внешнего источника. Согласно расчетам, скорость вращения компрессора составляет около 1,2 млн об/мин. (это не опечатка — именно миллионов!), линейная скорость внешней кромки ротора может достигать 500 м/с. Лопатки компрессора и турбины имеют размер 400 мкм в высоту. ГТД прокачивает 0,35 г воздуха каждую секунду, генерируя тягу в 11 гс и 17 Вт мощности на валу. Генератор не показан, в дальнейшем он может бытиь интегрирован в конструкцию.

Микроэнергия для будущего

Для чего же нужны подобные двигатели? Сейчас проект микродвигателей в MIT финансируется американским военным ведомством, которое видит в этих новых технологиях большой потенциал. Маленькие двигатели, заряжаемые специальными картриджами с водородом, можно использовать как в небольших беспилотных летательных аппаратах (БПЛА), так и в обычных электронных приборах. Именно питание мобильной военной электроники, скорее всего, станет испытанием сил для первых серийных микро-ГТД, которые появятся на рынке, как надеются разработчики, уже совсем скоро — через несколько лет.


Микро-ГТД можно использовать и для гражданских целей — вместо аккумуляторов в мобильных телефонах, ноутбуках, цифровых фотоаппаратах, а также в качестве дешевых микродвигателей для сельского хозяйства, различных датчиков и даже детских игрушек. «Для современных литий-ионных аккумуляторов удельная мощность запасенной энергии составляет порядка 120−150 Вт ч/кг. Это, конечно, не предел, новые серно-литиевые батареи имеют показатели в два раза выше — порядка 300−350 Вт ч/кг. Но микро-ГТД в скором будущем все равно будут вне конкуренции — мы ожидаем получить цифры порядка 500−700 Вт ч/кг. А в отдаленном будущем — 1200−1500 Вт ч/кг с учетом массы самого двигателя и запаса топлива», — оптимистично заявляет Алан Эпштейн.

О проблеме легких двигателей для малой авиации, не писали разве что только в «желтой» прессе. Писали и год назад, и два года, и десять лет назад. Принимаются программы развития АОН, к разработке легких маломощных двигателей подключился Центральный институт авиационного моторостроения ЦИОМ им. А.В. Баранова. Принимаются правительством программы помощи производителям техники для АОН. Мелькают в печати и на телевидении самолеты отечественной разработки. Мелькают и пропадают. Где-то они летают, где-то их испытывают.

Только вот на полевых площадках и аэродромах АОН, по-прежнему Цессны, Робинсоны да Текнамы иноземные летают. А машины российской разработки, не считая конечно Яков, смотрятся скорее как диковинка. И, как и в предыдущие года, все говорят и пишут об отсутствии отечественного легкого двигателя. Почему бы, хотя бы не сделать, как делали в прежние, советские времена. Огромная страна не стеснялась взять иностранный двигатель, приспособить его под возможности нашего производства, что-то улучшить, где-то потерять в качестве, но на выходе иметь наш, отечественный двигатель, который сможет послужить образцом и прототипом для целой линейки модернизированных движков. Отечественная история развития авиации, полна подобных примеров, и даже нет смысла их здесь приводить.

А где же воз?

Итак, в огромной стране, практически не осталось инфраструктуры для производства поршневых двигателей малой мощности. Таких, которые были бы способны поднять нашу малую авиацию и поставить ее что называется «на крыло».

Однако выход есть и из этой ситуации. Выход быть может не самый быстрый, и простой, но есть. Это разработка своих, отечественных микро и минидвигателей ГТД (газотурбинный двигатель).

Огромные холдинги, консорциумы и всевозможные ФГУП (кто не знает это Федеральное Государственное Унитарное Предприятие), изучают проблему, разрабатывают концептуальные проекты, создают предприятия с иностранным участием и осваивают государственные инвестиции. Вероятно, по прошествии энного количества времени мы на выходе всех этих корпоративных усилий и получим какой-то готовый продукт.

ЦИАМ ведет НИОКР

ФГУП "Центральный институт авиационного моторостроения им. П.И.Баранова" широким фронтом ведет НИОКР создания перспективных газотурбинных и поршневых двигателей в интересах разработчиков беспилотных летательных аппаратов, самолетов и вертолетов малой авиации. "АвиаПорт" приводит систематизированное изложение выступлений начальника сектора ЦИАМ (малоразмерные ГТД) Владимира Ломазова и начальника сектора ЦИАМ (ПД) Александра Костюченкова на II международной конференции "Беспилотная авиация - 2015".

    «…Работы по перспективным поршневым двигателям

В России в настоящее время полностью отсутствует производство поршневых авиадвигателей для беспилотников и легких самолетов и вертолетов, что заставляет отечественных конструкторов применять авиадвигатели зарубежного производства. В связи с огромной потребностью в таких двигателях, ЦИАМ проводит НИОКР и прорабатывает проекты перспективных поршневых авиадвигателей в интересах их применения на беспилотных летательных аппаратах, легких самолетах и вертолетах».

    «…Основные требования к авиадвигателям

Основными критериями при создании перспективных двигателей являлись стоимость эксплуатации, назначенный межремонтный ресурс и топливная эффективность, которые в совокупности определяют расходы на летный час. Проведенные расчеты показали, что для двигателей такого класса стоимость летного часа должна быть не более 500 рублей за час полета (без учета стоимости ГСМ), технический ресурс должен составить не менее 8000 часов. При таких показателях стоимость жизненного цикла составит 3,2 млн. рублей в сегодняшних ценах».

    «…Новые технологии создания малоразмерных ГТД

ЦИАМ проводит работы по внедрению новейших технологий для снижения массы, повышения качества отдельных узлов и деталей. Подтверждено снижение себестоимости изготовления колеса компрессора почти в 20 раз против классического колеса с вставными лопатками. За счет применения современных технологий литья цена ротора уменьшена примерно в 15-18 раз по сравнению с ротором стандартной вспомогательной силовой установки такой же размерности, которая стоит на отечественных самолетах. В качестве опытного образца изготовлен и будет испытываться на стенде стартер-генератор с возможностью раскручивания до 90 тысяч оборотов, который ставится на вал без редуктора и существенно уменьшает массу двигателя. Он обеспечивает мощность до 4 кВт и имеет массу всего лишь 700 грамм, против сегодняшних 10 кг».

(по материалам портала aviaport httр://www.аviaport.ru/nеws/2015/05/08/338921.html

Лаборатория интеллектуальной механики "Аудит Аналитик" (АА+)

За этим интригующим названием, скрывается группа энтузиастов, которые разработали, создали, и в данный момент уже испытывают первый опытный образец микро ГТД.

Сергей Журавлев Генеральный директор, вдохновитель и генератор идей Лаборатории со своим детищем в руках.

Вот что говорит про свою команду Сергей Журавлев, Генеральный директор Лаборатория интеллектуальной механики "Аудит Аналитик" (АА+):

«Кто Мы?

Команда разработчиков моделей и прототипов сложных систем (экосистем), и алгоритмов управления ими, как в технической, так и в гуманитарной сферах.

Наши компетенции опираются на собственную концепцию организации научно-конструкторского сообщества, распределённого (сетевого) производства и непрерывного процесса совершенствования линейки высокотехнологичных продуктов в испытательно-монтажном комплексе. Мы не считаем нужным покупать станки и строить завод. В России уже так много избыточных производственных мощностей, и покупок новейшего оборудования, что их надо загружать работой».

Сергей полон оптимизма и здорового реализма, и у него есть для этого все основания.

«Нам выдался редкий шанс войти в мировую элиту производителей малых турбин. Минимизация и локализация, роботизация и автономия – тренды XXI века, в которые пока ещё можно встроиться на равных с лидерами энергообеспечения малого авиастроения, беспилотной авиации, локальной энергетики. В России очень сильные физическая и математическая, материаловедческая и инженерная школы. Их потенциал позволяет в минимальном объёме турбины, достичь максимальных, значений эффективности, в первую очередь эксплуатационной, малыми силами и средствами».

Опытный образец ГТД малой тяги серии МкА

Следует отметить, что разработка газотурбинных установок малой тяги лишь одно из направлений, которым занимается Лаборатория АА+, и этот проект полностью частный, и быть может именно поэтому после всех расчетов, проработок и проб, они имеют на выходе уже готовый опытный образец.

Вот так буднично, на подоконнике, на тетрадке с расчетами и схемами уместился первый опытный ГТД малой тяги марки МкА. Родоначальник серии двигателей разной мощности, которые можно будет применять в различных отраслях.

Двигатель уже проходит испытания на стенде в лаборатории. Вот некоторые его параметры, которые уже четко определены:

Основные данные опытного образца ГТД малой тяги серии МкА (микро авиационный):

    Вес – 2060 гр.

    Длина – 324.00 мм

    Диаметр основной – 115.00 мм

    Ширина с пилонами – 128.00 мм

Рабочие характеристики:

    Тяга максимальная – 200 N

    Тяга рабочая – 160 N

    Расход топлива (на макс. тяге) – 460.00 ml \ min

    Используемое топливо – керосин\дизельное топливо

    Максимальные скорость вращения – 120 000 об\мин

«Разработанный двигатель отличается от изучавшихся нашим КБ аналогов, конструктивом, материалами, характеристиками. А также заранее продуманной интеграцией в ряд изделий».

Дмитрий Рыбаков

заместитель директора по инновациям Группы компаний “Беспилотные системы”

В Группе компаний «Беспилотные системы» настолько уверены в перспективности серии двигателей разработки Лаборатории, что начали проектирование перспективного БПЛА специально под них.

Я абсолютно уверен, что через некоторое время, мы увидим, легкие, мощные и экономичные двигатели Лаборатории АА+ не только на легких самолетах, автожирах и вертолетах, но и на большой авиационной технике.

В заключении хотелось бы привести еще одно высказывание Сергея Журавлева.


ФГУП "Центральный институт авиационного моторостроения им. П.И.Баранова" широким фронтом ведет НИОКР создания перспективных газотурбинных и поршневых двигателей в интересах разработчиков беспилотных летательных аппаратов, самолетов и вертолетов малой авиации. "АвиаПорт" приводит систематизированное изложение выступлений начальника сектора ЦИАМ (малоразмерные ГТД) Владимира Ломазова и начальника сектора ЦИАМ (ПД) Александра Костюченкова на II международной конференции "Беспилотная авиация - 2015".

Работы ЦИАМ по малоразмерным ГТД

Сектор для проведения НИОКР в интересах создания научно-технического задела и изготовления экспериментальных образцов перспективных авиадвигателей был создан два года назад. Речь идет о работах по исследованию вопросов и проблем создания короткоресурсных турбореактивных двигателей (ТРД) с тягой на стенде порядка 100 кг и турбовинтовых двигателей (ТВД) мощностью до 360 л.с. В ЦИАМ прорабатывается несколько проектов авиадвигателей: ТРД-100 на 106 кг тяги, ТРД-160 на 168 кг тяги, турбовинтовых ТВГТД на 360 л.с. мощности массой 55 кг и ТВГТДр с регенерацией тепла на мощность 350 л.с. и некоторые другие.

Основные требования к авиадвигателям

Основными критериями при создании перспективных двигателей являлись стоимость эксплуатации, назначенный межремонтный ресурс и топливная эффективность, которые в совокупности определяют расходы на летный час. Проведенные расчеты показали, что для двигателей такого класса стоимость летного часа должна быть не более 500 рублей за час полета (без учета стоимости ГСМ), технический ресурс должен составить не менее 8000 часов. При таких показателях стоимость жизненного цикла составит 3,2 млн рублей в сегодняшних ценах.

Создание унифицированного газогенератора

Известно, что "сердцем" ГТД является газогенератор (ГГ), поэтому ключевым вопросом является создание перспективного ГГ с расходом воздуха 1,5-1,6 кг/с. Двигатель с таким газогенератором должен обходиться заказчикам в виде ТРД для беспилотников по цене порядка в 500-550 тысяч рублей, то есть примерно 5000 рублей за один кг тяги. Это та нормативная составляющая, которую хотели бы видеть все заказчики, чтобы весь беспилотник получился недорогим. Сейчас институтом ведутся работы по разработке ГГ длиной порядка 500 мм и 240 мм в диаметре.

По проведенному анализу, базовые составляющие цены газогенератора:

Многим заказчикам хотелось бы видеть двигатель сложного цикла, который по расходу топлива приближается к поршневым двигателям. Это двигатель (ТВГТДр) с регенерацией тепла. Такие двигатели реализованы в наземной технике и выпускаются серийно. У классического ТВГТД удельный расход топлива составляет 0,296 кг/л.с.*ч, на ТВГТДр - 0,23 кг/л.с.ч, а у лучших поршневых двигателей - 0,16 кг/л.с.ч. Двигатель с теплообменным аппаратом находится сейчас на стадии изготовления опытных образцов.

Широкая линейка двигателей в интересах народного хозяйства и обороны может быть создана на базе одного ГГ. Есть и технические, и технологические, а также организационные предпосылки для того, чтобы создать ГТД в указанном классе мощности стоимостью 1,2 млн рублей.

ГТД на базе унифицированного газогенератора:

  • ТВГТДр с регенерацией тепла 50%
Новые технологии создания малоразмерных ГТД

ЦИАМ проводит работы по внедрению новейших технологий для снижения массы, повышения качества отдельных узлов и деталей. Подтверждено снижение себестоимости изготовления колеса компрессора почти в 20 раз против классического колеса с вставными лопатками. За счет применения современных технологии литья цена ротора уменьшена примерно в 15-18 раз по сравнению с ротором стандартной вспомогательной силовой установки такой же размерности, которая стоит на отечественных самолетах. В качестве опытного образца изготовлен и будет испытываться на стенде стартер-генератор с возможностью раскручивания до 90 тысяч оборотов, который ставится на вал без редуктора и существенно уменьшает массу двигателя. Он обеспечивает мощность до 4 кВт и имеет массу всего лишь 700 грамм, против сегодняшних 10 кг.

Работы по перспективным поршневым двигателям

В России в настоящее время полностью отсутствует производство поршневых авиадвигателей для беспилотников и легких самолетов и вертолетов, что заставляет отечественных конструкторов применять авиадвигатели зарубежного производства. В связи с огромной потребностью в таких двигателях, ЦИАМ проводит НИОКР и прорабатывает проекты перспективных поршневых авиадвигателей в интересах их применения на беспилотных летательных аппаратах, легких самолетах и вертолетах.

Преимущества применения в авиации поршневых двигателей

По удельной стоимости и удельному расходу топлива авиационные поршневые двигатели (АПД) значительно превосходят газотурбинные двигатели (ГТД) в своем классе мощности до 500 л.с. В тоже время, АПД существенно уступают ГТД по удельному весу. Кроме того, при времени полета более пяти часов дизельные двигатели также имеют значительные преимущества перед ГТД. Бензиновые АПД представлены в основном двухтактными двигателями мощностью до 50 л.с. и четырехтактными мощностью 50-400 л.с. Кроме того, с возможностью работы на авиакеросине используются дизельные двигатели мощностью 100-500 л.с. и роторно-поршневые мощностью до 300 л.с.

Проводимые НИОКР в интересах создания перспективных АПД

ЦИАМ исследует как новые конструктивные схемы, так и применение самых современных материалов и перспективных технологических решений. Например, в настоящее время в рамках проводимых НИР создается унифицированная роторно-статорная группа, а также ведется изготовление и подготовка к проведению стендовых испытаний двигателя на 100 л.с. Проводятся исследования новых материалов при создании самых ответственных узлов и деталей АПД.

Линейка прорабатываемых ЦИАМ перспективных российских АПД

В рамках проводимых НИОКР прорабатывается ряд АПД различного диапазона мощности. В частности, в работе находится ряд роторно-поршневых авиадвигателей мощностью от 100 л.с. до 300 л.с. на базе унифицированной роторно-статорной группы, бензиновый двигатель мощностью 120-150 л.с. с возможностью оснащения турбокомпрессором, дизельный АПД мощностью 300 л.с. для беспилотников, легких самолетов и вертолетов. Кроме того, на стадии разработки Технического задания находится разработка АПД мощностью 50 л.с. и ряд дизельных АПД мощностью 450-800 л.с.

АПД ПД-1400

АПД ПД-1400 разрабатывается совместно ЦИАМ и Гаврилов-Ямским машиностроительным заводом "Агат". Разрабатываемый поршневой четырехтактный воздушного охлаждения с редуктором АПД должен иметь мощность взлетную 90 л.с., удельный расход топлива на уровне 210 г/л.с.*ч и удельный вес 0,75 кг/л.с. Этот двигатель уже прошел достаточно большой комплекс испытаний и они продолжаются.

АПД ПД-2800

АПД ПД-2800 также разрабатывается в рамках ОКР совместно с Гаврилов-Ямским машиностроительным заводом "Агат". Этот поршневой четырехтактный дизельный двигатель жидкостного охлаждения готовится к испытаниям. Он рассчитан на мощность 300 л.с., его удельный расход топлива должен составить 160 г/л.с.*ч, а удельный вес 0,75 кг/л.с.

Перспективные показатели прорабатываемых АПД

Применение самых современных технологий при изготовлении перспективных АПД позволит снизить массу силовой установки на 20-25%, снизить удельный расход топлива на основных режимах на 15-20%, повысить ресурс АПД до 5000 часов, снизить эксплуатационные расходы на 30-40%.

Сравнение АПД и ГТД:

Наименование TS-100 МГТД-250 МГТДр-250 М337 SR-305-230
Разработчик Чехия ЦИАМ ЦИАМ Чехия Франция
Стадия разработки Опытный Эскизный проект Эскизный проект Серийный Опытный
Мощность, л.с. 240 360 350 235 230
Удельный расход
топлива, кг/л.с. ч
0,39 0,31 0,25 0,22 0,16
Часовой расход топлива, кг 42 33,5 22 21,7 14,8
Масса двигателя, кг 55 45 87 153 181
Межремонтный ресурс, час 500 2 500 2 500 1 000 1 500
Назначенный ресурс, час 1 500 7 500 7 500 3 000 4 500
Стоимость серийного
образца, млн руб.
3,6 1,3 2,1 1,8 2,4

Экспериментальные образцы газотурбинных двигателей (ГТД) впервые появились в преддверии Второй мировой войны. Разработки воплотились в жизнь в начале пятидесятых годов: газотурбинные двигатели активно использовались в военном и гражданском самолетостроении. На третьем этапе внедрения в промышленность малые газотурбинные двигатели, представленные микротурбинными электростанциями, начали широко применяться во всех сферах промышленности.

Общие сведения о ГТД

Принцип функционирования общий для всех ГТД и заключается в трансформации энергии сжатого нагретого воздуха в механическую работу вала газовой турбины. Воздух, попадая в направляющий аппарат и компрессор, сжимается и в таком виде попадает в камеру сгорания, где производится впрыскивание топлива и поджег рабочей смеси. Газы, образовавшиеся в результате сгорания, под высоким давлением проходят сквозь турбину и вращают ее лопатки. Часть энергии вращения расходуется на вращение вала компрессора, но большая часть энергии сжатого газа преобразуется в полезную механическую работу вращения вала турбины. Среди всех двигателей внутреннего сгорания (ДВС), газотурбинные установки обладают наибольшей мощностью: до 6 кВт/кг.

Работают ГТД на большинстве видов диспергированного топлива, чем выгодно отличаются от прочих ДВС.

Проблемы разработки малых ТГД

При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата. Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.

Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

Авиационный ГТД «Климов ГТД-350» для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Ма лый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг;
— габариты: 1385 х 626 х 760 мм;
— номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт);
— частота вращения свободной турбины: 24000;
— диапазон рабочих температур -60…+60 ºC;
— удельный расход топлива 0,5 кг/кВт час;
— топливо — керосин;
— мощность крейсерская: 265 л.с;
— мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Малые ГТД: области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии.
— Мощность микротурбин составляет 30-1000 кВт;
— объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить:
— широкий диапазон нагрузок;
— низкая вибрация и уровень шума;
— работа на различных видах топлива;
— небольшие габариты;
— низкий уровень эмиссии выхлопов.

Отрицательные моменты:
— сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием);
— силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности. Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков. И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.


Close