Производство, передача и использование электрической энергии

Цели урока:

    Конкретизировать представление школьников о способах передачи электроэнергии, о взаимных переходах одного вида энергии в другой.

    Дальнейшее развитие у учащихся практических навыков исследовательского характера, выведение познавательной активности детей на творческий уровень знаний.

    Отработка и закрепление понятия «энергосистема» на краеведческом материале.

Оборудование: электробытовые приборы, трансформатор, карта

План урока

    Организационный момент

    Актуализация знаний

    Изучение нового материала

    Итог урока.

ХОД УРОКА

    Организационный момент

    Актуализация знаний

    Изучение нового материала

Практически вся жизнь человека в быту связана с электричеством. Электричество помогает нам обогревать и освещать наши дома, готовить пищу, делать уборку, развлекать нас с вами, поддерживать связь с нашими близкими и многое другое. А что будет, если его не станет?

Как наша прожила б планета,
Как люди жили бы на ней
Без теплоты, магнита, света
И электрических лучей?

А. Мицкевич

А, действительно, как бы жила планета? Ведь было время, когда люди жили без света. Трудно жили.

Говоря об истории использования электрической энергии в нашей стране следует отметить 1920 год.

В феврале 1920 года была создана комиссия по электрификации, которая предложила план ГОЭЛРО . Этим планом предусматривалось:

    Опережающее развитие электроэнергетики;

    Повышение мощности электростанций;

    Централизация производства электроэнергии;

    Широкое использование местного топлива и энергетических ресурсов;

    Постепенный переход промышленности, сельского хозяйства, транспорта на электроэнергию.

– Почему именно развитие электроэнергетики было поставлено на первое место для развития государства?
– В чем преимущество электроэнергии перед другими видами энергии?
– Как осуществляется передача электроэнергии?
– Вот вопросы, на которые мы с вами ответим в процессе нашего урока.
Тема урока: «Производство, передача и использование электрической энергии »

В чем преимущество электроэнергии перед другими видами энергии?

    Ее можно передавать по проводам в любой населенный пункт;

    Можно легко превращать в любые виды энергии;

    Легко получать из других видов энергии;

Какие виды энергии можно преобразовать в электрическую? (Ответы учащихся).

В зависимости от вида преобразуемой энергии электростанции бывают (Ответы учащихся):

    Ветряные

    Тепловые

    Гидравлические

  1. Приливные

    Геотермальные

Какими бы ни были типы электростанций, главное устройство на любой из них – это генератор.

Генератор – это устройство, преобразующее энергию того или иного вида в электрическую энергию.

Примеры генераторов:

Гальванические элементы;

Электростатические машины;

Термобатареи;

Солнечные батареи;

Индукционные генераторы постоянного и переменного тока.

В современной энергетике применяются индукционные генераторы переменного тока, действие которых основано на явлении электромагнитной индукции.

? Вспомните, что такое электромагнитная индукция, и кто открыл это явление?

Ответ: Майкл Фарадей открыл явление электромагнитной индукции, которое заключается в возникновении индукционного тока под действием переменного магнитного поля.

После открытия этого явления многие скептики, сомневаясь, спрашивали: «Какая от этого польза?» На что Фарадей ответил: «Какая может быть польза от новорожденного?» Прошло немногим более половины столетия и, как сказал американский физик Р.Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить». И этим богатырем, изменившим облик Земли, является генератор.

В настоящее время существуют различные модификации индукционных генераторов. Но все они состоят, из одних и тех же, частей – это магнит или электромагнит, создающий магнитное поле, и обмотка в которой индуцируется ЭДС.

Принцип действия генератора

Принцип действия генератора нам поможет понять модель, находящаяся у меня на столе (или рис10.2 стр.68 учебника):

Обратите внимание, в данной модели генератора вращается проволочная рамка, магнитное поле создает неподвижный, постоянный магнит. При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца, под действием которой свободные заряды приходят в направленное движение, то есть наводится ЭДС индукции, которая имеет магнитное происхождение.

В больших промышленных генераторах вращается именно электромагнит, который является ротором.

Ротор – подвижная часть генератора

Обмотки, в которых наводится ЭДС, вложены в пазах статора.

Статор – неподвижная часть генератора.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них электрического поля, порожденного изменением магнитного потока при вращении ротора.

Генераторы вырабатывают переменный электрический ток.

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

График переменного тока представлен на стр 68, рис. 10.3 учебника. Отрицательное значение силы тока соответствуют противоположному направлению тока.

Переменный ток имеет преимущество перед постоянным, потому что напряжение и силу тока можно в очень широких пределах преобразовать (трансформировать) почти без потерь, а такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно большая необходимость трансформации напряжения и тока возникает при передаче электроэнергии на большие расстояния.

Произведенная электроэнергия передается к потребителю.

- Кто, на ваш взгляд, являются основными потребителями электроэнергии?

Ответы учащихся:

    Промышленность (почти 70%)

    Транспорт

    Сельское хозяйство

    Бытовые нужду населения

- Вся ли энергия, получаемая на электростанции, доходит до потребителя? Почему происходят потери при передаче электроэнергии?

При прохождении тока по проводам, они нагреваются. По закону Джоуля-Ленца учитывая что , получим .
Отчего зависит количество теплоты, выделяемое в проводах?
Чем сила тока, удельное сопротивление и длина проводов, тем количество теплоты и наоборот. Чем площадь поперечного сечения провода, тем количество теплоты. Но увеличивать S не выгодно, так как это приведет к увеличению массы проводов.
Уменьшить количество теплоты можно за счет уменьшения силы тока. Для этого применяют устройство, называемое трансформатором.

Трансформатор – это устройство, преобразующее переменный ток, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности.

В первые трансформаторы были использованы в 1878 году русским учённым П.Н.Яблочковым для питания изобретённых им электрических свечей.

Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная (смотри рис.)

Действие трансформатора основано на явлении электромагнитной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней электродвижущую силу (ЭДС). Если вторичную обмотку замкнуть на какой-либо приемник энергии, то под действием индуктируемой ЭДС по этой обмотке и через приемник энергии будет протекать электрический ток. Одновременно в первичной обмотке также появится нагрузочный ток. Таковым образом, электрическая энергия, трансформируясь, передается из первичной сети во вторичную при напряжении, на которое рассчитан приемник энергии, включенный во вторичную сеть.

Основной величиной, характеризующей работу трансформатора является коэффициент трансформации- К

К - коэффициент трансформации

Коэффициент трансформации - это величина, численно равная отношению напряжений на зажимах двух обмоток в режиме холостого хода.

Для двух обмоток силового трансформатора, расположенных на одном стержне, коэффициент трансформации принимается равным отношению чисел их витков.

Трансформаторы могут быть повышающими и понижающими.

При K 1 трансформатор называется понижающим , так как

при K повышающим, так как

При передаче электроэнергии на значительное расстояние напряжение повышают до нескольких сотен киловольт, поэтому на выходе из электростанции должен стоять повышающий трансформатор. Но так как потребитель в основном использует более низкое напряжение, то на входе в населенный пункт ставят понижающий трансформатор.

    Выступление учащихся с докладами

    Закрепление изученного материала

№1. Для определения числа витков на первичной обмотке трансформатора на его сердечник было намотано 30 витков провода, концы которого подключили к вольтметру. Чему равно число витков в первичной обмотке трансформатора, если при подаче на него напряжения 220 В, вольтметр, подключенный к катушке из 30 витков, показал напряжение 2 В?

№2. Внутреннее сопротивление источника переменного тока r вн = 6,4·10 3 Ом. Определите коэффициент трансформации K идеального трансформатора, с помощью которого можно получить от этого источника максимальную мощность на нагрузочном сопротивлении R н = 16 Ом.

№3. На первичную обмотку понижающего трансформатора в высоковольтной линии передачи электрической энергии подается переменное напряжение с действующим значением (U 1) д = 12 кВ. Напряжение со вторичной обмотки (U 2) д = 220 В используется для электроснабжения жилых домов. Предполагая трансформатор идеальным, а нагрузку вторичной обмотки чисто активной, определите

1) коэффициент трансформации K ;

2) действующие значения токов (I 1) д и (I 2) д в первичной и вторичной обмотках в предположении, что потребляемая мощность P ср = 96 кВт;

3) сопротивление нагрузки R н во вторичной цепи трансформатора

Решение

    Итог урока.

    Домашнее задание. § 10, № 7.2, 7.19, 7.24, лаб. раб. № 3

Урок на тему «Получение переменного электрического тока».

Тип урока: изучение нового материала.

Цели урока:

Обучающая

Закрепление знаний по теме «Явление электромагнитной индукции».

Изучение устройства и принципа действия генератора переменного тока и его применения.

Развивающая

Развитие познавательных интересов и интеллектуальных способностей в процессе наблюдений и демонстрации эксперимента.

Воспитательная

Воспитание интереса к предмету, вооружение учащихся научными методами познания, позволяющими получить объективные знания об окружающем мире.

Воспитание ответственного отношения к природе, как социальной черты личности.

Оборудование

Источник тока (ВС - 24М);

Демонстрационный разборный трансформатор;

Ключ, гальванометр, электронный осциллограф, лампочки (220В, 40Вт; 3,5В, 0,2А)

Плакаты.

Компьютер и проектор.

Ход урока

Организационный момент

Проверка домашнего задания.

1. Какую задачу в 1821 году поставил перед собой учёный М. Фарадей?

2. Как он решил эту задачу? (Ученик демонстрирует опыты)

3. Сделать вывод: при каком условии во всех опытах в катушке, замкнутой на гальванометр, возникал индукционный ток?

4. В чём заключается явление электромагнитной индукции?

5. В чём практическая важность открытия явления электромагнитной индукции?

6. Назовите фамилии отечественных учёных, внесших большой вклад в разработку и создание генераторов электрической энергии?

Итак, мы переходим к устройству, которое дает возможность получить электрический ток, и называется генератором.

Идея получения электрического тока таким способом впервые пришла Майклу Фарадею. В его рисунках даже сохранился чертеж первого генератора.

Большинство генераторов - это т.н. электромеханические генераторы, в них за счет механического движения подвижной части такого генератора создается переменный электрический ток.

На сегодняшний день вся промышленность использует именно переменный электрический ток.

Объясняется это тем, что очень удобно, во-первых, получить переменный электрический ток, а во-вторых, удобно передавать его на большие расстояния. Вот поэтому в мире везде и всюду используется именно переменный ток.

Обозначают его на всех схемах волнистой линией.

Современный генератор представляет собой довольно сложное устройство, но в основном состоит он из двух частей - ротора и статора.

Рисунок 12 - Устройство генератора.

Статор - это неподвижная часть. Ротор - подвижная. Можно сказать, что статор - это аналог катушки с большим числом витков. А ротор - это магнит, который вращается и создает изменяющийся магнитный поток с течением времени, пронизывая те витки, которые находятся в статоре, индуцирует, наводит в этих витках электрический ток.

Если генератор маломощный, то обычно ротор делают из постоянного магнита. Ему придают определённую форму, создают внутри несколько отдельных полюсов. Этот постоянный магнит, вращаясь прямо внутри статора, непосредственно создаёт индукционный электрический ток. Если же необходим мощный генератор, то в этом случае ротор - уже не постоянный магнит, а электромагнит.

Конечно, необходимо сказать, что во всех генераторах ротор вращается за счет работы сторонней силы. Если этот генератор установлен на гидроэлектростанции, то там используется энергия падающей воды. В этом случае ротор вращается с небольшой скоростью. Поэтому приходится делать ротор сложной формы, чтобы создать большое изменение магнитного потока при вращении ротора и получить значительный электрический ток. Например, у генератора на тепловых электростанциях ротор будет вращаться за счет поступающего пара, там частота вращения достаточно большая, и в этом случае количество полюсов и форма ротора будет совсем иная.

Рисунок 13 - Устройство ротора и статора.

Если говорить про статор, то это неподвижная часть генератора. В ней прорезаются пазы. Представьте себе цилиндр, в котором прорезаны пазы, в этих пазах укладывается обмотка статора, где и создается индукционный электрический ток. Так устроены генераторы переменного тока.

Большое значение имеет вопрос о передаче переменного электрического тока. Передача переменного электрического тока на большие расстояния связана с электромагнитной индукцией. Чтобы передать переменный электрический ток, используются приборы, которые называются трансформаторами. Трансформатор - прибор для преобразования электрического тока и напряжения. Он состоит из двух катушек, они называются обмотками, и эти две катушки (катушек может быть и больше на самом деле) надеты на один сердечник.

Рисунок 14 - Внешний вид трансформатора.

Трансформатор - это устройство, которое состоит из двух или большего количества катушек, надетых на общий сердечник. Когда мы подключаем переменный электрический ток к одной из катушек, в ней создается переменное магнитное поле. Магнитное поле одной катушки усиливается за счет железного сердечника и своим магнитным потоком пронизывает витки другой катушки. Тем самым в другой катушке тоже будет создаваться электрический ток. Если мы будем теперь изменять количество витков в одной катушке и в другой катушке, то будут меняться значения электрического тока в различных катушках.

Вот здесь и происходит самое главное. Дело в том, что, когда электрический ток протекает по проводам, главная потеря связана с тем, что провода нагреваются, т.е. сказывается тепловое действие электрического тока. Это является главным неудобством при передаче постоянного электрического тока.

А если мы говорим о переменном токе, то за счет трансформатора, изменяя витки в катушках, можно регулировать значение электрического тока. Если мы уменьшим количество витков, то можем изменить и значение электрического тока. Мы можем его уменьшить, и потери электрического тока при передаче тоже уменьшатся. Следовательно, трансформатор дает возможность уменьшить значение электрического тока и увеличить при этом напряжение электрического тока.

Таким образом, удобно передавать переменный электрический ток, трансформатор называется повышающим тогда, когда напряжение увеличивается. Когда такой электрический ток приходит уже непосредственно к нам в квартиры, то включают другой трансформатор, который называется понижающим. В этом случае напряжение уменьшается до 220 Вт, но сила тока в цепи возрастает.

Этот электрический ток мы используем в бытовых приборах. Если мы будем рассматривать отдельно каждую линию электропередач (кратко ее называют ЛЭП), то каждая такая линия отдельно разрабатывается для конкретной электростанции, с которой мы получаем электроэнергию. На пути ее передачи устанавливаются трансформаторные станции, которые меняют напряжение переменного электрического тока.

Задача

Проволочное кольцо помещено в однородное магнитное поле (рис. 1).

Стрелочки, изображенные рядом с кольцом, показывают, что в случаях а и б кольцо движется прямолинейно вдоль линий индукции магнитного поля, а в случаях в, г и д - вращается вокруг оси 00". В каких из этих случаев в кольце может возникнуть индукционный ток?

Рисунок 15

Ответ:

Индукционный ток в кольце возникает только в случае г) , так как только в этом случае изменяется магнитный поток, пронизывающий контур кольца.

Изучение нового материала.

Учитель демонстрирует опыт Фарадея, акцентируя внимание на том, что модуль и направление индукционного тока периодически меняется.

Демонстрация опыта.

Рисунок 16 - Схема демонстрации опыта и полученной осциллограммы.

Наблюдая опыт по осциллограмме напряжения, ученики должны подойти к выводу: сила тока (напряжение) в осветительной сети меняется со временем по гармоническому закону (то есть по закону синуса или косинуса). Учитель дополняет вывод информацией, что стандартная частота тока, применяемая в осветительной сети и промышленности России и большинства стран мира, равна 50Гц.

Учитель демонстрирует модель генератора переменного тока (вращение проволочной рамки в магнитном поле). Учитель заостряет внимание учащихся на том, что в генераторе происходит превращение механической энергии в электрическую.

4 . Объяснение по плакату устройства современного электромеханического индукционного генератора и назначения его основных элементов.

Рисунок 17 - Устройство современного электромеханического индукционного генератора.

Вопрос к классу : каким образом приводится во вращение ротор генератора на гидроэлектростанции, на тепловой электростанции?

Обсуждаются и уточняются ответы учащихся.

Добиться ответа:

На гидроэлектростанциях - потоком падающей воды;

На тепловых - паром высокого давления и температуры.

5. Учитель демонстрирует действующую модель электростанции.

Содержание демонстрационного опыта:

Соединяем шкив водяной турбины с помощью резинового ремня со шкивом генератора. Генератор замыкаем на низковольтовую лампочку 3,5В. Подаём воду из водопроводного крана в турбину. Вращение турбины передаётся генератору. Наблюдаем свечение лампочки.

Ученики должны подойти к выводу: что механическая энергия воды (пара) превращается в механическую энергию ротора, которая в свою очередь превращается в электрическую энергию!

6. На экран проецируются фотографии промышленных предприятий.

Закрепление знаний, полученных на уроке.

1) Вопросы:

Какой электрической ток называется переменным? С помощью какого простого опыта его можно получить?

Где используют переменный электрический ток?

На каком явлении основано действие наиболее распростра-ненных в настоящее время генераторов переменного тока?

Расскажите об устройстве и принципе действия промыш-ленного генератора.

Чем приводится во вращение ротор генератора на тепловой электростанции? на гидроэлектростанции?

Какова стандартная частота промышленного тока, приме-няемого в России и многих других странах?

2) Решение задачи:

Волжская ГЭС им. В.И. Ленина построена в 1950-1957 г.г., имеет напор 30м (разность высот между верхним и нижним течением), и электрическую мощность 2300 МВт.

Оценить ежесекундный расход воды.

Дано: Решение:

V = 1 м 3

1) Ep = m·g·h m = ρ·V Ep = ρ·V·g·h ≈ 300 ·103 Дж

2) P = W = n·Ep

Количество кубометров ежесекундно падающих с плотины

Ответ: Ep = 300 кДж, ≈

ρ = 10 3 кг/м 3

P = 2,3 ·10 9 Вт

E p - ? n = = ?

Подведение итогов.

Учитель подводит итоги урока, выставляет оценки ученикам, комментируя каждый ответ и оценку.

Домашнее задание:

Основной материал § 50. Упр. 40(2), стр. 168.

Дополнительный материал: подготовить сообщения по теме «Тепловые станции Тольятти» и «Экологические проблемы, связанные с работой тепловых и гидроэлектростанций».

Разделы: Физика

Тип урока – формирование новых знаний.

Оборудование:

  • таблица “Принцип работы генератора переменного тока”,
  • видеофрагмент “Переменный ток против постоянного”,
  • модель генератора переменного тока.

Цель урока:

  • изучить устройство и принцип работы генератора переменного тока, определение переменного тока, параметры, характеризующие ток (амплитуда, период, частота, фаза), сформировать умение аналитическим и графическим методом определять параметры переменного тока;
  • развивать умение анализировать и классифицировать полученную информацию, пользоваться справочной литературой.

Ход урока

1. Организационный момент.

2. Актуализация опорных знаний. (Слайды 1,2)

1. Проводник находится в электрическом поле. Как движутся в нём свободные электрические заряды?

А. Совершают колебательное движение
Б. Хаотично
В. Упорядоченно

2. Что принято за направление электрического тока?

А. Направление упорядоченного движения положительно заряженных частиц.
Б. Направление упорядоченного движения отрицательно заряженных частиц.
В. Определённого ответа дать нельзя.

3. Какова роль источника тока в электрической цепи?

А. Порождает заряженные частицы.
Б. Создаёт и поддерживает разность потенциалов в электрической цепи.
В. Разделяет положительные и отрицательные заряды.

4. В проводнике отсутствуют электрическое поле. Как движутся в нём свободные электрические заряды?

А. Совершают колебательное движение.
Б. Хаотично.
В. Упорядоченно.

5. Какие силы вызывают разделение зарядов в источнике тока?

А. Кулоновские силы отталкивания.
Б. Сторонние (неэлектрические) силы.
В. Кулоновские силы отталкивания и сторонние (неэлектрические) силы.

3. Сообщение цели и плана урока .

Мы повторили материал о постоянном электрическом токе, а теперь изучим переменный электрический ток. (Слайды 3,4)

знать:

  • определение переменного тока
  • параметры переменного тока (амплитуда, период, частота, фаза)
  • способ получения переменного тока

уметь:

  • определять параметры переменного тока
  • строить по данным таблицы и читать график переменного тока

4. Изучение нового материала.

До конца XIX века использовались только источники постоянного тока – химические элементы и генераторы. Это ограничивало возможности передачи электрической энергии на большие расстояния. Проблема была решена при использовании переменного тока и трансформаторов.

(Слайды 5,6)

Переменный ток – это ток, изменение которого по величине и направлению повторяется периодически через равные промежутки времени и который характеризуется амплитудой, периодом, частотой, фазой .

Амплитуда – максимальное значение физической величины.(обозначают прописными буквами с индексом m: Im, Um, Em

Период – время, в течение которого переменный ток совершает полный цикл своих изменений. Т – период, с.

Частота – это число периодов в секунду. f – частота, Гц.

f = 50Гц– промышленная частота переменного тока в России.

Это интересно. (Слайд 7).

(Сообщение студента о выборе промышленной частоты в других странах).

Рассмотрим примеры параметров переменного тока. (Слайд 8)

Физические величины Амплитудные значения Действующие значения Мгновенные значения
Сила тока, А Im – тока Iд= i= Im sin(t+0),

i= 5sin (2f t + 0) =5sin(250t+ 0)=

5sin(100t+ 0, А

Напряжение, В Um – напряжения Uд= U=Umsin (t+0) =50t+ 0) = 380(100 t + 0),В
ЭДС, В m – Э ДС д =д = = sin(t+0)=

12sin(250t + 0) =12(100 t+ 0), В

Получение (генерирование) переменного тока.

(Слайды 9,10)

Честь создания генераторов переменного тока, совершивших революцию в электротехнике, принадлежит сербу Н. Тесле и русскому инженеру М.О. Доливо-Добровольскому.

Работа генератора переменного тока основана на явлении электромагнитной индукции (ЭМИ).

Устройство генератора переменного тока. (Слайд 11)

  1. Обмотка статора с большим числом витков, размещенных в его пазах. В ней наводится ЭДС.
  2. Станина, внутри которой размещены статор и ротор.
  3. Ротор (вращающаяся часть генератора) создаёт магнитное поле от электромашины постоянного тока.
  4. Статор состоит из отдельных пластин для уменьшения нагрева от вихревых токов. Пластины – из электротехнической стали.
  5. Клеммный щиток на корпусе станины для снятия напряжения.

При равномерном вращении ротора в обмотках статора наводится ЭДС:

е = E sin t = BSN sin 2nt,

где e = BSN – максимальное значение ЭДС; n – число оборотов ротора в секунду; N – число витков обмотки статора.

Вырабатываемое напряжение в промышленных генераторах -В.

При вращении рамки в магнитном поле меняется магнитный поток. В рамке наводится переменная ЭДС индукции. Если цепь замкнута, то возникает индуктивный ток, который непрерывно меняется по модулю, а через 1 / 2 Т – по направлению.

Вынужденные электрические колебания, возникшие в цепях под действием напряжения, осуществляются по синусоидальному закону u =sint или u =cost. .

    ознакомиться с устройством, принципом действия, основными режимами работы генератора постоянного тока с независимым возбуждением;

    приобрестипрактические навыки пуска, эксплуатации и остановки генератора постоянного тока;

    экспериментально подтвердить теоретические сведения о характеристиках генератора постоянного тока.

Основные теоретические положения

Электрические машины постоянного тока могут работать как в режиме генератора, так и в режиме двигателя, т.е. обладают свойством обратимости.

Генератор постоянного тока - это электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию постоянного тока.

Электродвигатель постоянного тока -электрическая машина, предназначенная для преобразования электрической энергии постоянного тока в механическую.

Общий вид электрической машины постоянного тока представлен на рис. 1.

Устройство электрической машины постоянного тока

Как и любая другая электрическая машина, машина постоянного тока состоит из неподвижной части - статора и вращающейся части -ротора 1, выполняющего функциюякоря , так как в его обмотках наводится ЭДС.

В статоре машины находится обмотка возбуждения, создающая необходимый магнитный поток Ф . Статор состоит из цилиндрической станины 2 (стальное литье, стальная труба или сваренная листовая сталь), к которой крепятся главные 3 и дополнительные 4 полюса с обмотками возбуждения. С торцов статор закрывают подшипниковые щиты 5. В них впрессовываются подшипники и укрепляется щеточная траверса с щетками 6.

Якорь состоит из цилиндрического пакета (набранного из лакированных листов электротехнической стали для ослабления вихревых токов). В пазы сердечника якоря укладывается обмотка, соединенная с коллектором 7; все это закрепляется на валу якоря.

Принцип действия

Простейшую электрическую машину можно представить в виде витка, вращающегося в магнитном поле (рис. 2,а ,б ). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.

Принцип работы электрической машины основан на явлении электромагнитной индукции. Рассмотрим принцип работы электрической машины в режиме генератора. Пусть виток приводится во вращение от внешнего приводного двигателя (ПД). Виток пересекает магнитное поле, и в нем по закону электромагнитной индукции наводится переменная ЭДС, направление которой определяется по правилу правой руки. Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него - к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя щетка - отрицательным. При повороте витка на 180 0 проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменится на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя пластина-с верхней щеткой, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т.е. являются простейшим механическим выпрямителем.

Для уменьшения пульсаций в генераторе постоянного тока вместо одной катушки по окружности якоря размещается несколько равномерно разнесенных обмоток, которые образуют обмотку якоря, и присоединяются для изменения полярности ЭДСк коллектору, состоящему из большего числа сегментов. Поэтому ЭДСв цепи между выводами щеток пульсирует уже не так сильно, т.е. получается практически постоянной.

Для этой постоянной ЭДС справедливо выражение

Е =с 1 Фn ,

где с 1 -коэффициент, зависящий от конструктивных элементов якоря и числа полюсов электрической машины;Ф - магнитный поток;n - частота вращения якоря.

При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток i = I я, направление которого совпадает с направлением ЭДС (см. рис. 2,б ). По закону Ампера взаимодействие тока i и магнитного поляВ создает силуf , которая направлена перпендикулярноВ иi . Направление силыf определяется правилом левой руки: на верхний проводник сила действует влево, на нижний-вправо. Эта пара сил создает вращающий моментМ вр , направленный в данном случае против часовой стрелки и равный

М =с 2 Ф I я.

Этот момент противодействует моменту привода, т.е. является тормозящим моментом.

Ток якоря I я вызывает в якорной обмотке с сопротивлениемR я падение напряженияR я I я , так что при нагрузке напряжениеU на выводах щеток получается меньше, чемЭДС , а именно

U = E R я I я.

Всероссийский фестиваль педагогического творчества
(2016/2017 учебный год)
Номинация: Педагогические идеи и технологии
Название работы: Конспект урока по теме «Генератор переменного тока. Трансформатор» 9 кл

Урок по теме: Генератор переменного тока. Трансформатор.
Цель урока: повторение и обобщение знаний о промышленном способе получения электрической энергии, детальное изучение трансформатора.
Задачи
Обучающая
Закрепить знания по темам «Явление электромагнитной индукции и Переменный ток».
Изучить принцип получения и передачи переменного тока.
Познакомить с техническими устройствами: генератором переменного тока и трансформатором.
Развивающая
Создать условия для развития познавательных интересов и интеллектуальных способностей в процессе наблюдения за демонстрацией эксперимента и самостоятельной работы на уроке.
Развивать умения выдвигать и проверять гипотезы, обнаруживать зависимости между электрическим током и магнитным полем, объяснять полученные результаты.
Воспитательная
Создать условия для воспитания интереса к предмету, вооружения учащихся научными методами познания, позволяющими получить объективные знания об окружающем мире.
Воспитывать необходимость соблюдения правил безопасного использования технических устройств, выступать в роли грамотного потребителя электрической энергии.
План урока:
Организационный момент.
Изучение материала о переменном токе (+ демонстрация).
Изучение принципа работы генератора переменного тока.
Знакомство с трудностями передачи переменного тока.
Изучение устройства трансформатора.
Знакомство с принципами передачи переменного тока.
Подведение итогов урока
Домашнее задание.

Ход урока
Оргмомент. Повторение д/з. Мотивация:

Знаете ли вы какое-нибудь физическое явление явление, открытое в начале 19-го века, которое лежит в основе всей современной цивилизациии и даже личный комфорт каждого из нас напрямую связан с этим явлением? Выслушать детей
(Это явление ЭМИ)

Существует ли связь между явлением ЭМИ и производством электроэнергии, которая поступает в каждый наш дом, квартиру?
О том как создаётся электроэнергия мы с вами говорили еще в 9 классе.
(проверка повторения с Plikers)
Итак, тема сегодняшнего урока: «Генератор переменного тока. Трансформатор»
Сегодня на уроке мы разберёмся более детально с физическими основами получения электроэнергии и её передачи потребителям.

Предлагаю рассмотреть эксперимент
катушка и магнит при приближении и удалении,
катушка и магнит при движении перпендикулярно оси катушки

Независимо от полученных предложений провести демонстрацию возникновения индукционного тока (с помощью программы Logger Lite).
Обратить внимание учащихся на отклонение колебаний в противоположных направлениях.
Задать вопросы:
-менялось ли направление индукционного тока при изменении магнитного потока, пронизывающего контур?
-можно ли утверждать, что значение модуля силы индукционного тока было постоянным?
-можно ли для системы катушка-магнит добиться непрерывного изменения магнитного потока?
3. Демонстрация возникновения индукционного тока при вращении магнита. Пошаговый анализ результатов демонстрации. Использовать Logger Lite.
Из графика зависимости значения индукционного тока от времени следует, что переменный ток периодически меняется по модулю и направлению за время, равное времени полного оборота рамки.
Демонстрация видеофрагмента о местной гидроэлектростанции.
Таблица «Генератор переменного тока» + рисунок в учебнике - сравнить, что не понятно?
2. Пояснения к устройству:
В турбогенераторах – ротор (вращается с большой частотой) поэтому он представляет массивный стальной цилиндр с осевыми пазами, где размещены обмотки постоянного тока.
В гидрогенераторах (тихоходные) ротор изготавливают в форме звезды, на внешней поверхности которой укрепляют электромагниты чередующейся полярности, возбуждаемые постоянным током.
РОТОР генератора переменного тока приводится в движение первичным двигателем: паровой турбиной, гидротурбиной, ДВС, ветродвигателем. Его обмотка питается от генератора постоянного тока, который обычно размещают на общем валу с генератором переменного тока, а иногда от выпрямительного устройства, которое подключено к зажимам самого генератора.
Вопрос: Почему в мощных генераторах переменного тока индукционный ток возбуждается не во вращающейся рамке, а в неподвижной обмотке статора за счет вращения индуктора.
Ответ: В статоре мощной машины, например, на на 500 кВт, генерирующей ток напряжением 20 кВ, сила тока в обмотке равна 25кА. Снять такой ток с помощью скользящего контакта невозможно. А возбудители имеют небольшие мощности, токи намагничивания не превышают сотни ампер, что вполне позволяет подавать их в обмотку ротора с помощью скользящего контакта. Кроме того, статор легче охлаждать.
Важной характеристикой генератора является частота, наводимой ЭДС.
$=р·п, где р- число пар полюсов, п- частота вращения ротора.
В) Применение генератора переменного тока - на различных электростанциях. Генераторы мощностью 300-500 МВт имеют КПД 99% - это весьма совершенные установки.
С) об электростанциях: тепловых, гидравлических, атомных.
КПД тепловых электростанций не больше 40%.
ГЭС – потери энергии очень малы.
D) ОГРАНИЧЕНИЯ:
Чем больше мощность генератора, тем меньше расходуется топлива на 1 кВт.час энергии. Это экономически выгодно. Но чем больше мощность, тем больше сила тока, больше нагревание и потери. Применение различных способов охлаждения (воздухом, водой, водородом, маслом) уже дошло до разумных пределов – дальнейший рост мощности приведет к размерам энергоблоков, невыгодным с точки зрения металлоемкости и потерь электроэнергии.
Поэтому разрабатываются турбогенераторы новой конструкции, в которых используются сверхпроводящие обмотки.
О КРИОГЕННЫХ ТУРБОГЕНЕРАТОРАХ – СООБЩЕНИЕ НА СЛЕДУЮЩИЙ УРОК?

Итак, если магнитный поток пронизывающий контур меняется, то возникает переменный индукционный ток. При этом совершенно неважно будет ли в этом случае магнит двигаться относительно катушки или катушка относительно магнита: главное, чтобы магнитный поток, пронизывающий контур непрерывно менялся.
Машина, в которой магнитный поток, пронизывающий контур меняется непрерывно периодическим образом и при этом генерируется переменный, ток называют электромеханическим индукционным генератором.

Вращающаяся часть генератора называется ротором, а неподвижная статором.
Генераторы, производящие большие индукционные токи, в качестве ротора используют электромагнит и как правило не один, а несколько. Это позволяет снизить скорость вращения и уменьшить износ генератора. Стандартная частота переменного тока в промышленной и осветительной сети России 50 Гц.
Генераторы, вырабатывающие большие переменные токи, приводит в движение механическая энергия: падающей воды (ГЭС), пара (ТЭС, АЭС). Но электростанции располагают вблизи энергоресурсов, а электроэнергию по проводам передают к потребителю. При протекании тока по проводам возникает нагрев проводов. Поэтому некоторое количество теплоты по закону Джоуля-Ленца теряется.

Но сечение провода не может быть очень большим, поэтому для передачи электроэнергии к потребителю на большие расстояния необходимо понизить значение переменного тока
Трансформатор.
Изменять значение переменного тока и напряжения помогло изобретение в 1876 году П.Н. Яблочковым трансформатора.
Назначение: 1 – повышать и понижать напряжение переменного тока при передаче его от источника на дальние расстояния к потребителю.
2- для питания различных приборов и установок от сети переменного тока.
Устройство: самостоятельная работа на модели трансформатора и по плакату.
Задание: - рассмотреть устройство, зарисовать схематически, работа трансформатора на холостом ходу (????- почему при разомкнутой вторичной цепи трансформатор почти не потребляет энергию)
Демонстрации: понижение напряжения (Logger Lite).
Использовать рисунок и обозначение на схемах.
13 QUOTE 13 QUOTE 1415 1415 13 QUOTE 1415

Предлагаю вам оценить свои знания по теме «переменный ток, трансформатор»
Далее тест с Plikers.
Домашнее задание: 51 упр 42 (1, 2)

Рисунок 5515


Приложенные файлы


Close