Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium). Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. В 1827 г. Велер выделил металлический алюминий более эффективным способом - нагреванием безводного хлористого алюминия с металлическим калием.

Нахождение в природе, получение:

По распространенности в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Содержание алюминия в земной коре по данным различных исследователей составляет от 7,45% до 8,14% от массы земной коры. В природе алюминий встречается только в соединениях (минералах).
Корунд: Al 2 O 3 - относится к классу простых оксидов, и иногда образует прозрачные драгоценные кристаллы - сапфира, и, с добавлением хрома, рубина. Накапливается в россыпях.
Бокситы: Al 2 O 3 *nH 2 O - осадочные алюминиевые руды. Содержат вредную примесь - SiO 2 . Бокситы служат важным сырьем для получения алюминия, а также красок, абразивов.
Каолинит: Al 2 O 3 *2SiO 2 *2H 2 O - минерал подкласса слоистых силикатов, главная составная часть белой, огнеупорной, и фарфоровой глины.
Современный метод получения алюминия был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 3 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке. Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии.

Физические свойства:

Металл серебристо-белого цвета, легкий, плотность 2,7 г/см 3 , температура плавления 660°C, температура кипения 2500°C. Высокая пластичность, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью и теплопроводностью, обладает высокой светоотражательной способностью. Алюминий образует сплавы почти со всеми металлами.

Химические свойства:

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако, при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH 4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Легко реагирует с простыми веществами: кислородом, галогенами: 2Al + 3Br 2 = 2AlBr 3
С другими неметаллами алюминий реагирует при нагревании:
2Al + 3S = Al 2 S 3 2Al + N 2 = 2AlN
Алюминий способен только растворять водород, но не вступает с ним в реакцию.
Со сложными веществами: алюминий реагирует со щелочами (с образованием тетрагидроксоалюминатов):
2Al + 2NaOH + 6H 2 O = 2Na + 3H 2
Легко растворяется в разбавленной и концентрированной серной кислотах:
2Al + 3H 2 SO 4 (разб) = Al 2 (SO 4) 3 + 3H 2 2Al + 6H 2 SO 4 (конц) = Al 2 (SO 4) 3 + 3SO 2 + 6H 2 O
Алюминий восстанавливает металлы из их оксидов (алюминотермия): 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe

Важнейшие соединения:

Оксид алюминия , Al 2 O 3: твердое, тугоплавкое вещество белого цвета. Кристаллический Al 2 O 3 химически пассивен, аморфный - более активен. Медленно реагирует с кислотами и щелочами в растворе, проявляя амфотерные свойства:
Al 2 O 3 + 6НСl(конц.) = 2АlСl 3 + ЗН 2 О Al 2 O 3 + 2NаОН(конц.) + 3Н 2 О = 2Na
(в расплаве щелочи образуется NaAlO 2).
Гидроксид алюминия , Al(OH) 3: белый аморфный (гелеобразный) или кристаллический. Практически не растворим в воде. При нагревании ступенчато разлагается. Проявляет амфотерные, равно выраженные кислотные и основные свойства. При сплавлении с NaOH образуется NaAlO 2 . Для получения осадка Аl(ОН) 3 щелочь обычно не используют (из-за легкости перехода осадка в раствор), а действуют на соли алюминия раствором аммиака - при комнатной температуре образуется Аl(ОН) 3
Соли алюминия . Соли алюминия и сильных кислот хорошо растворимы в воде и подвергаются в значительной степени гидролизу по катиону, создавая сильнокислотную среду, в которой растворяются такие металлы, как магний и цинк: Al 3+ + H 2 O =AlOH 2+ + H +
Нерастворимы в воде фторид AlF 3 и ортофосфат АlРO 4 , а соли очень слабых кислот, например Н 2 СО 3 , вообще не образуются осаждением из водного раствора.
Известны двойные соли алюминия - квасцы состава MAl(SO 4) 2 *12H 2 O (M=Na + , K + , Rb + , Cs + , ТI + , NH 4 +), самые распространенные из них алюмокалиевые квасцы KAl(SO 4) 2 *12Н 2 O.
Растворение амфотерных гидроксидов в щелочных растворах рассматривается как процесс образования гидроксосолей (гидроксокомплексов). Экспериментально доказано существование гидроксомплексов [Аl(ОН) 4 (Н 2 О) 2 ] - , [Аl(ОН) 6 ] 3- , [Аl(ОН) 5 (Н 2 O)] 2- ; из них первый - наиболее прочный. Координационное число алюминия в этих комплексах равно 6, т.е. алюминий является шестикоординированным.
Бинарные соединения алюминия Соединения с преимущественно ковалентными связями, например сульфид Al 2 S 3 и карбид Аl 4 С 3 полностью разлагаются водой:
Al 2 S 3 + 6Н 2 О = 2Аl(ОН) 3 + 3Н 2 S Аl 4 С 3 + 12H 2 O = 4Аl(ОН) 3 + 3СН 4

Применение:

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве - лёгкость, податливость штамповке, коррозионная стойкость, высокая теплопроводность. Алюминий является важным компонентом многих сплавов (медные - алюминиевые бронзы, магниевые и др.)
Применяется в электротехнике для изготовления проводов, их экранирования.
Алюминий широко используется и в тепловом оборудовании и в криогенной технике.
Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
Алюминий и его соединения используются в ракетной технике в качестве ракетного горючего. В производстве строительных материалов как газообразующий агент.

Аллаяров Дамир
ХФ ТюмГУ, 561 группа.

(А l ), галлий (Ga ), индий (In ) и таллий (Т l ).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar (Al ) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2) 8) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3) - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

· Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)

· Нефелины - KNa 3 4

· Алуниты - KAl(SO 4) 2 2Al(OH) 3

· Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)

· Корунд - Al 2 O 3

· Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

· Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

· Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3

· Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изученияхимических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I . Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

2 Аl +3 I 2 =2 A l I 3 (йодид алюминия) ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.

ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

ОПЫТ

II . Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O=2 Al (OH) 3 +3 H 2

без оксидной пленки

ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 +8 Al =4 Al 2 O 3 +9 Fe + Q

Термитная смесь Fe 3 O 4 иAl (порошок) –используется ещё и в термитной сварке.

С r 2 О 3 + 2А l = 2С r + А l 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты:2 Al+ 3 H 2 SO 4 =Al 2 (SO 4) 3 +3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O =2 Na [ Al (OH ) 4 ] +3 H 2

ОПЫТ

Na l (ОН) 4 ]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg

Выделившаяся ртуть растворяет алюминий, образуяамальгаму .

Обнаружение ионов алюминия в растворах : ОПЫТ


5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминияявляется авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражениятепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильногидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток →4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 +3 C=4 Al+3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученыйСен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством НаполеонаIII, императораФранции. В знаксвоей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр №1 - Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 - Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 - Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций :
Al + H 2 SO 4 (раствор ) ->
Al + CuCl 2 ->
Al + HNO 3 (
конц ) - t ->
Al + NaOH + H 2 O ->

№3. Осуществите превращения:
Al -> AlCl 3 -> Al -> Al 2 S 3 -> Al(OH) 3 - t ->Al 2 O 3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Алюминий

АЛЮМИ́НИЙ -я; м. [от лат. alumen (aluminis) - квасцы]. Химический элемент (Al), серебристо-белый лёгкий ковкий металл с высокой электропроводностью (применяемый в авиации, электротехнике, строительстве, быту и т.п.). Сульфат алюминия. Сплавы алюминия.

алюми́ний

(лат. Aluminium, от alumen - квасцы), химический элемент III группы периодической системы. Серебристо-белый металл, лёгкий (2,7 г/см 3), пластичный, с высокой электропроводностью, t пл 660ºC. Химически активен (на воздухе покрывается защитной оксидной плёнкой). По распространённости в природе занимает 4-е место среди элементов и 1-е среди металлов (8,8% от массы земной коры). Известно несколько сотен минералов алюминия (алюмосиликаты, бокситы, алуниты и др.). Получают электролизом глинозёма Al 2 O 3 в расплаве криолита Na 3 AlF 6 при 960ºC. Применяют в авиации, строительстве (конструкционный материал, преимущественно в виде сплавов с другими металлами), электротехнике (заменитель меди при изготовлении кабелей и др.), пищевой промышленности (фольга), металлургии (легирующая добавка), алюминотермии и др.

АЛЮМИНИЙ

АЛЮМИ́НИЙ (лат. Aluminium), Al (читается «алюминий»), химический элемент с атомным номером 13, атомная масса 26,98154. Природный алюминий состоит из одного нуклида 27 Al. Расположен в третьем периоде в группе IIIA периодической системы элементов Менделеева. Конфигурация внешнего электронного слоя 3s 2 p 1 . Практически во всех соединениях степень окисления алюминия +3 (валентность III).
Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al 3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.
Простое вещество алюминий - мягкий легкий серебристо-белый металл.
История открытия
Латинское aluminium происходит от латинского же alumen, означающего квасцы (см. КВАСЦЫ) (сульфат алюминия и калия KAl(SO 4) 2 ·12H 2 O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному - оксид алюминия (см. АЛЮМИНИЯ ОКСИД) ) сделал еще в 1754 немецкий химик А. Маргграф (см. МАРГГРАФ Андреас Сигизмунд) . Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед (см. ЭРСТЕД Ханс Кристиан) . Он обработал амальгамой калия (сплавом калия со ртутью) хлорид алюминия AlCl 3 , который можно было получить из глинозема, и после отгонки ртути выделил серый порошок алюминия.
Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль (см. СЕНТ-КЛЕР ДЕВИЛЬ Анри Этьен) в 1854 предложил использовать для получения алюминия металлический натрий (см. НАТРИЙ) , и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.
Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (см. ЭРУ Поль Луи Туссен) (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20 веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.
Нахождение в природе
По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода и кремния), на его долю приходится около 8,8% массы земной коры. Алюминий входит в состав огромного числа минералов, главным образом, алюмосиликатов (см. АЛЮМОСИЛИКАТЫ) , и горных пород. Соединения алюминия содержат граниты (см. ГРАНИТ) , базальты (см. БАЗАЛЬТ) , глины (см. ГЛИНА) , полевые шпаты (см. ПОЛЕВЫЕ ШПАТЫ) и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов (см. БОКСИТЫ) - главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты (см. АЛУНИТ) и нефелины (см. НЕФЕЛИН) .
В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы-концентраторы, накапливающие алюминий в своих органах, - некоторые плауны, моллюски.
Промышленное получение
При промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния и железа и других элементов. В результате такой переработки получают чистый оксид алюминия Al 2 O 3 - основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al 2 O 3 очень высока (более 2000 °C), использовать его расплав для электролиза не удается.
Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит (см. КРИОЛИТ) Na 3 AlF 6 (температура расплава немного ниже 1000 °C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al 2 О 3 (до 10 % по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:
2Al 2 О 3 = 4Al + 3О 2 .
Так как анодом при электролизе служит графит, то выделяющийся на аноде кислород реагирует с графитом и образуется углекислый газ СО 2 .
При электролизе получают металл с содержанием алюминия около 99,7%. В технике применяют и значительно более чистый алюминий, в котором содержание этого элемента достигает 99,999% и более.
Физические и химические свойства
Алюминий - типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660 °C, температура кипения около 2450 °C, плотность 2,6989 г/см 3 . Температурный коэффициент линейного расширения алюминия около 2,5·10 -5 К -1 . Стандартный электродный потенциал Al 3+ /Al –1,663В.
Химически алюминий - довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al 2 О 3 , которая препятствует дальнейшему доступу кислорода к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.
С остальными кислотами алюминий активно реагирует:
6НСl + 2Al = 2AlCl 3 + 3H 2 ,
3Н 2 SO 4 + 2Al = Al 2 (SO 4) 3 + 3H 2 .
Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:
Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.
Затем протекают реакции:
2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ,
NaOH + Al(OH) 3 = Na,
или суммарно:
2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,
и в результате образуются алюминаты (см. АЛЮМИНАТЫ) : Na - алюминат натрия (тетрагидроксоалюминат натрия), К - алюминат калия (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число (см. КООРДИНАЦИОННОЕ ЧИСЛО) 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие: Na и К.
При нагревании алюминий реагирует с галогенами:
2Al + 3Cl 2 = 2AlCl 3 ,
2Al + 3 Br 2 = 2AlBr 3 .
Интересно, что реакция между порошками алюминия и иода (см. ИОД) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:
2Al + 3I 2 = 2AlI 3 .
Взаимодействие алюминия с серой при нагревании приводит к образованию сульфида алюминия:
2Al + 3S = Al 2 S 3 ,
который легко разлагается водой:
Al 2 S 3 + 6Н 2 О = 2Al(ОН) 3 + 3Н 2 S.
С водородом алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений (см. АЛЮМИНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ) , можно синтезировать твердый полимерный гидрид алюминия (AlН 3) х - сильнейший восстановитель.
В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al 2 О 3 .
Высокая прочность связи в Al 2 О 3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:
3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe и даже
3СаО + 2Al = Al 2 О 3 + 3Са.
Такой способ получения металлов называют алюминотермией (см. АЛЮМИНОТЕРМИЯ) .
Амфотерному оксиду Al 2 О 3 соответствует амфотерный гидроксид - аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl 2 O 3 ·yH 2 O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH) 3 .
В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:
Al 2 (SO 4) 3 + 6NaOH = 2Al(OH) 3 + 3Na 2 SO 4 ,
или за счет добавления соды к раствору соли алюминия:
2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 Ї + 6NaCl + 3CO 2 ­,
а также добавлением раствора аммиака к раствору соли алюминия:
AlCl 3 + 3NH 3 ·H 2 O = Al(OH) 3 Ї + 3H 2 O + 3NH 4 Cl.
Применение
По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами - ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.
Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов - дуралюмина (см. ДУРАЛЮМИН) (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумина (85-90% Al, 10-14% Si, 0,1% Na) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди, магния, железа, никеля и др.
Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония - циркалой - широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ.
Особо следует отметить окрашенные пленки из оксида алюминия на поверхности металлического алюминия, получаемые электрохимическим путем. Покрытый такими пленками металлический алюминий называют анодированным алюминием. Из анодированного алюминия, по внешнему виду напоминающему золото, изготовляют различную бижутерию.
При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.
Алюминий в организме
В организм человека алюминий ежедневно поступает с пищей (около 2-3 мг), но его биологическая роль не установлена. В среднем в организме человека (70 кг) в костях, мышцах содержится около 60 мг алюминия.


Энциклопедический словарь . 2009 .

Синонимы :

    - (символ Аl), металл серебристо белого цвета, элемент третьей группы периодической таблицы. Впервые в чистом виде был получен в 1827 г. Наиболее распространенный металл в коре земного шара; главным источником его является руда боксит. Процесс… … Научно-технический энциклопедический словарь

    АЛЮМИНИЙ - АЛЮМИНИЙ, Aluminium (хим. знак А1, ат. вес 27,1), самый распространенный на поверхности земли металл и, после О и кремния, важнейшая составная часть земной коры. А. встречается в природе, по преимуществу, в виде солей кремнекислоты (силикатов);… … Большая медицинская энциклопедия

    Алюминий - представляет собой голубовато белый металл, отличающийся особой легкостью. Он очень пластичен, легко поддается прокатке, волочению, ковке, штамповке, а также литью и т.д. Как и другие мягкие металлы, алюминий также очень хорошо поддается… … Официальная терминология

    Алюминий - (Aluminium), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154; легкий металл, tпл660 °С. Содержание в земной коре 8,8% по массе. Алюминий и его сплавы используют как конструкционные материалы в… … Иллюстрированный энциклопедический словарь

    АЛЮМИНИЙ, алюмний муж., хим. щелочной металл глиний, основа глинозема, глины; также, как основа ржавчины, железо; а яри медь. Алюминит муж. ископаемое, похожее на квасцы, водный сернокислый глинозем. Алюнит муж. ископаемое, весьма близкое к… … Толковый словарь Даля

    - (серебристый, легкий, крылатый) металл Словарь русских синонимов. алюминий сущ., кол во синонимов: 8 глиний (2) … Словарь синонимов

    - (лат. Aluminium от alumen квасцы), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154. Серебристо белый металл, легкий (2,7 г/см³), пластичный, с высокой электропроводностью, tпл 660 .С.… … Большой Энциклопедический словарь

    Al (от лат. alumen название квасцов, применявшихся в древности как протрава при крашении и дублении * a. aluminium; н. Aluminium; ф. aluminium; и. aluminio), хим. элемент III группы периодич. системы Mенделеева, ат. н. 13, ат. м. 26,9815 … Геологическая энциклопедия

    АЛЮМИНИЙ, алюминия, мн. нет, муж. (от лат. alumen квасцы). Серебристо белый ковкий легкий металл. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Министерствообразования и науки РФ

«АЛЮМИНИЙ»

2007 год

АЛЮМИНИЙ (лат. Aluminium; от«alumen» - квасцы), Al, химический элемент III группы периодическойсистемы, атомный номер 13, атомная масса 26,98154.

1.Общая характеристикаалюминия

Природный алюминий состоит изодного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практическиво всех соединениях степень окисления алюминия +3 (валентность III).

Радиус нейтрального атомаалюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательнойионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828,28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.

Простое вещество алюминий -мягкий легкий серебристо-белый металл.

2.Свойства

Алюминий - типичный металл,кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403нм. Температура плавления чистого металла 660°C, температура кипения около2450°C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширенияалюминия около 2,5·10–5 К–1 Стандартный электродный потенциал Al3+/Al- 1,663В.

Химически алюминий - довольноактивный металл. На воздухе его поверхность мгновенно покрывается плотнойпленкой оксида Al2О3, которая препятствует дальнейшемудоступу кислорода (O) к металлу и приводит к прекращению реакции, чтообусловливает высокие антикоррозионные свойства алюминия. Защитнаяповерхностная пленка на алюминии образуется также, если его поместить вконцентрированную азотную кислоту.

С остальными кислотами алюминийактивно реагирует:

6НСl + 2Al = 2AlCl3 + 3H2,

3Н2SO4 + 2Al = Al2(SO4)3+ 3H2.

Алюминий реагирует с растворамищелочей. Сначала растворяется защитная оксидная пленка:

Al2О3 + 2NaOH + 3H2O =2Na.

Затем протекают реакции:

2Al + 6H2O = 2Al(OH)3+ 3H2,

NaOH + Al(OH)3= Na,

или суммарно:

2Al + 6H2O + 2NaOH =Na + 3Н2,

и в результате образуютсяалюминаты: Na - алюминат натрия (Na) (тетрагидроксоалюминатнатрия), К - алюминат калия (K) (терагидроксоалюминат калия) или др.Так как для атома алюминия в этих соединениях характерно координационное число6, а не 4, то действительные формулы указанных тетрагидроксосоединенийследующие:

Naи К.

При нагревании алюминий реагируетс галогенами:

2Al + 3Cl2= 2AlCl3,

2Al + 3 Br2= 2AlBr3.

Интересно, что реакция междупорошками алюминия и иода (I) начинается при комнатной температуре, если висходную смесь добавить несколько капель воды, которая в данном случае играетроль катализатора:

2Al + 3I2 = 2AlI3.

Взаимодействие алюминия с серой(S) при нагревании приводит к образованию сульфида алюминия:

2Al + 3S = Al2S3,

который легко разлагается водой:

Al2S3 + 6Н2О= 2Al(ОН)3 + 3Н2S.

С водородом (H) алюминийнепосредственно не взаимодействует, однако косвенными путями, например, сиспользованием алюминийорганических соединений, можно синтезировать твердыйполимерный гидрид алюминия (AlН3)х - сильнейшийвосстановитель.

В виде порошка алюминий можносжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминияAl2О3.

Высокая прочность связи в Al2О3обусловливает большую теплоту его образования из простых веществ и способностьалюминия восстанавливать многие металлы из их оксидов, например:

3Fe3O4 +8Al = 4Al2O3 + 9Fe и даже

3СаО + 2Al = Al2О3+ 3Са.

Такой способ получения металловназывают алюминотермией.

Амфотерному оксиду Al2О3соответствует амфотерный гидроксид - аморфное полимерное соединение, не имеющеепостоянного состава. Состав гидроксида алюминия может быть передан формулой xAl2O3·yH2O,при изучении химии в школе формулу гидроксида алюминия чаще всего указывают какАl(OH)3.

В лаборатории гидроксид алюминияможно получить в виде студенистого осадка обменными реакциями:

Al2(SO4)3+ 6NaOH = 2Al(OH)3 + 3Na2SO4,

или за счет добавления соды краствору соли алюминия:

2AlCl3+ 3Na2CO3 + 3H2O = 2Al(OH)3 + 6NaCl+ 3CO2,

а также добавлением растворааммиака к раствору соли алюминия:

AlCl3+ 3NH3·H2O = Al(OH)3 + 3H2O + 3NH4Cl.

Название и история открытия:латинское aluminium происходит от латинского же alumen, означающего квасцы(сульфат алюминия и калия (K) KAl(SO4)2·12H2O),которые издавна использовались при выделке кож и как вяжущее средство. Из-завысокой химической активности открытие и выделение чистого алюминия растянулосьпочти на 100 лет. Вывод о том, что из квасцов может быть получена «земля»(тугоплавкое вещество, по-современному - оксид алюминия) сделал еще в 1754немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может бытьвыделена из глины, и ее стали называть глиноземом. Получить металлическийалюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамойкалия (сплавом калия (K) со ртутью (Hg)) хлорид алюминия AlCl3,который можно было получить из глинозема, и после отгонки ртути (Hg) выделилсерый порошок алюминия.

Только через четверть века этотспособ удалось немного модернизировать. Французский химик А. Э. Сент-КлерДевиль в 1854 году предложил использовать для получения алюминия металлическийнатрий (Na), и получил первые слитки нового металла. Стоимость алюминия былатогда очень высока, и из него изготовляли ювелирные украшения.

Промышленный способ производстваалюминия путем электролиза расплава сложных смесей, включающих оксид, фторидалюминия и другие вещества, независимо друг от друга разработали в 1886 году П.Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходомэлектроэнергии, поэтому в больших масштабах оно было реализовано только в 20-омвеке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932года на Волховском алюминиевом комбинате, построенном рядом с Волховскойгидроэлектростанцией.

3.Нахождение в природе

По распространенности в земнойкоре алюминий занимает первое место среди металлов и третье место среди всехэлементов (после кислорода (O) и кремния (Si)), на его долю приходится около8,8% массы земной коры. Алюминий входит в огромное число минералов, главнымобразом, алюмосиликатов, и горных пород. Соединения алюминия содержат граниты,базальты, глины, полевые шпаты и др. Но вот парадокс: при огромном числеминералов и пород, содержащих алюминий, месторождения бокситов - главного сырьяпри промышленном получении алюминия, довольно редки. В России месторождениябокситов имеются в Сибири и на Урале. Промышленное значение имеют также алунитыи нефелины. В качестве микроэлемента алюминий присутствует в тканях растений иживотных. Существуют организмы-концентраторы, накапливающие алюминий в своихорганах, - некоторые плауны, моллюски.

4.Получение

Промышленное получение: припромышленном производстве бокситы сначала подвергают химической переработке,удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. Врезультате такой переработки получают чистый оксид алюминия Al2O3- основное сырье при производстве металла электролизом. Однако из-за того, чтотемпература плавления Al2O3 очень высока (более 2000°C),использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли вследующем. В электролизной ванне сначала расплавляют криолит Na3AlF6(температура расплава немного ниже 1000°C). Криолит можно получить, например,при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляютнемного Al2О3 (до 10% по массе) и некоторые другиевещества, улучающие условия проведения последующего процесса. При электролизеэтого расплава происходит разложение оксида алюминия, криолит остается врасплаве, а на катоде образуется расплавленный алюминий:

2Al2О3 =4Al + 3О2.

Так как анодом при электролизеслужит графит, то выделяющийся на аноде кислород (O) реагирует с графитом иобразуется углекислый газ СО2.

При электролизе получают металл ссодержанием алюминия около 99,7%. В технике применяют и значительно болеечистый алюминий, в котором содержание этого элемента достигает 99,999% и более.

5.Применение

По масштабам применения алюминийи его сплавы занимают второе место после железа (Fe)и его сплавов. Широкоеприменение алюминия в различных областях техники и быта связано с совокупностьюего физических, механических и химических свойств: малой плотностью,коррозионной стойкостью в атмосферном воздухе, высокой тепло- иэлектропроводностью, пластичностью и сравнительно высокой прочностью. Алюминийлегко обрабатывается различными способами - ковкой, штамповкой, прокаткой и др.Чистый алюминий применяют для изготовления проволоки (электропроводностьалюминия составляет 65,5% от электропроводности меди, но алюминий более чем втри раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) ифольги, используемой как упаковочный материал. Основная же часть выплавляемогоалюминия расходуется на получение различных сплавов. Сплавы алюминия отличаютсямалой плотностью, повышенной (по сравнению с чистым алюминием) коррозионнойстойкостью и высокими технологическими свойствами: высокой тепло- иэлектропроводностью, жаропрочностью, прочностью и пластичностью. На поверхностисплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевыхсплавов обусловлено введением в алюминий различных добавок, образующих с нимтвердые растворы или интерметаллические соединения. Основную массу алюминияиспользуют для получения легких сплавов - дуралюмина (94% - алюминий, 4% медь(Cu), по 0,5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина(85-90% - алюминий, 10-14% кремний (Si), 0,1% натрий (Na)) и др. В металлургииалюминий используется не только как основа для сплавов, но и как одна из широкоприменяемых легирующих добавок в сплавах на основе меди (Cu), магния(Mg), железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкоеприменение в быту, в строительстве и архитектуре, в автомобилестроении, всудостроении, авиационной и космической технике. В частности, из алюминиевогосплава был изготовлен первый искусственный спутник Земли. Сплав алюминия ициркония (Zr) - циркалой - широко применяют в ядерном реакторостроении.Алюминий применяют в производстве взрывчатых веществ.

Особо следует отметить окрашенныепленки из оксида алюминия на поверхности металлического алюминия, получаемыеэлектрохимическим путем. Покрытый такими пленками металлический алюминийназывают анодированным алюминием. Из анодированного алюминия, по внешнему видунапоминающему золото (Au), изготовляют различную бижутерию.

При обращении с алюминием в бытунужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно тольконейтральные (по кислотности) жидкости (например, кипятить воду). Если,например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу иона приобретает неприятный «металлический» привкус. Поскольку в быту оксиднуюпленку очень легко повредить, то использование алюминиевой посуды все-такинежелательно.

6.Биологоческая роль

В организм человека алюминийежедневно поступает с пищей (около 2-3 мг), но его биологическая роль неустановлена. В среднем в организме человека (70 кг) в костях, мышцах содержитсяоколо 60 мг алюминия.

Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий химик нагрел безводный хлорид элемента с металлическим калием. Произошло это во 2-ой половине 19-го века. До 20-го столетия кг алюминия стоил дороже .

Новый металл позволяли себе лишь богачи и государственные . Причина высокой стоимости – сложность отделения алюминия от других веществ. Метод добычи элемента в промышленных масштабах предложил Чарльз Холл.

В 1886-ом году он растворил оксид в расплаве криолита. Немец заключил смесь в гранитный сосуд и подключил к нему электрический ток. На дно емкости осели бляшки чистого металла.

Химические и физические свойства алюминия

Какой алюминий? Серебристо-белый, блестящий. Поэтому, Фридрих Велер сравнивал полученные им гранулы металла с . Но, была оговорка, — алюминий значительно легче.

Пластичность же приближена к драгоценным и . Алюминий – вещество , без проблем вытягивающееся в тонкую проволоку и листы. Достаточно вспомнить фольгу. Она делается на основе 13-го элемента.

Алюминий легок за счет небольшой плотности. Она втрое меньше, чем у и железа. При этом в прочности 13-ый элемент почти не уступает.

Такое сочетание сделало серебристый металл незаменимым в промышленности, к примеру, производстве деталей для автомобилей. Речь идет и о кустарном производстве, ведь сварка алюминия возможна даже в домашних условиях.

Формула алюминия позволяет активно отражать световые, но и тепловые лучи. Высока и электропроводность элемента. Главное, излишне не нагревать его. При 660-ти градусах расплавится. Поднимись температура чуть выше – сгорит.

Металл исчезнет, останется лишь оксид алюминия . Он образуется и в стандартных условиях, но лишь в виде поверхностной пленки. Она защищает металл. Поэтому, он неплохо противостоит коррозии, ведь доступ кислорода блокирован.

Оксидная пленка защищает металл и от воды. Если удалить с поверхности алюминия налет, запустится реакция с Н 2 О. Выделение газов водорода произойдет даже при комнатной температуре. Так что, алюминиевая лодка не превращается в дым лишь за счет оксидной пленки и защитной краски, нанесенной на корпус судна.

Наиболее активно взаимодействие алюминия с неметаллами. Реакции с бромом и хлором проходят даже при обычны условиях. В итоге, образуются соли алюминия . Соли водорода получаются, если соединить 13-ый элемент с растворами кислот. Реакция состоится и со щелочами, но лишь после удаления оксидной пленки. Выделится чистый водород.

Применение алюминия

Металл напыляют на зеркала. Пригождаются высокие показатели отражения света. Процесс проходит в условиях вакуума. Изготавливают не только стандартные зеркала, но предметы с зеркальными поверхностями. Таковыми становятся: керамическая плитка, бытовая техника, светильники.

Дуэт алюминий-медь – основа дюралюминий. Попросту его называют дюраль. В качестве добавляют . Состав прочнее чистого алюминия в 7 раз, поэтому, подходит для области машиностроения и авиаконструирования.

Медь придает 13-му элементу прочность, но не тяжесть. Дюраль остается в 3 раза легче железа. Небольшая масса алюминия – залог легкости авто, самолетов, кораблей. Это упрощает перевозку, эксплуатацию, снижает цену продукции.

Купить алюминий автопромышленники стремятся еще и потому, что на его сплавы легко наносятся защитные и декоративные составы. Краска ложится быстрее и ровнее, чем на сталь, пластик.

При этом, сплавы податливы, просто обрабатываются. Это ценно, учитывая массу изгибов и конструктивных переходов на современных моделях автомобилей.

13-ый элемент не только легко красится, но и сам может выступать в роли красителя. В текстильной промышленности закупается сульфат алюминия . Он же пригождается в печатном деле, где требуются нерастворимые пигменты.

Интересно, что раствор сульфата алюминия применяют еще и для очистки воды. В присутствии «агента» вредные примеси выпадают в осадок, нейтрализуются.

Нейтрализует 13-ый элемент и кислоты. Особенно хорошо с этой ролью справляется гидроксид алюминия . Его ценят в фармакологии, медицине, добавляя в лекарства от изжоги.

Выписывают гидроксид и при язвах, воспалительных процессах кишечного тракта. Так что в аптечных препарата тоже есть алюминий. Кислота в желудке – повод узнать о таких лекарствах побольше.

В СССР и бронзы с 11-процентной добавкой алюминия чеканили . Достоинство знаков – 1, 2 и 5 копеек. Начали выпускать в 1926-ом, закончили в 1957-ом году. А вот производство алюминиевых банок для консервов не прекратили.

Тушенку, сайру и прочие завтраки туристов до си пор упаковывают в тару на основе 13-го элемента. Такие банки не вступают в реакцию с продуктами питания, при этом, легки и дешевы.

Порошок алюминия входит в состав многих взрывчатых смесей, в том числе и пиротехники. В промышленности применяют подрывные механизмы на основе тринитротолуола и измельченного 13-го элемента. Мощная взрывчатка получается и при добавлении к алюминию аммиачной селитры.

В нефтяной отрасли необходим хлорид алюминия . Он играет роль катализатора при разложении органики на фракции. У нефти есть свойство выделять газообразные, легкие углеводороды бензинового типа, взаимодействуя с хлоридом 13-го металла. Реагент должен быть безводным. После добавления хлорида, смесь прогревают до 280-ти градусов Цельсия.

В строительстве нередко смешиваю натрий и алюминий . Получается присадка к бетону. Алюминат натрия ускоряет его затвердение за счет убыстрения гидратации.

Повышается скорость микрокристаллизации, значит, увеличивается прочность и твердость бетона. К тому же, алюминат натрия спасает арматуру, уложенную в раствор, от коррозии.

Добыча алюминия

Металл замыкает тройку самых распространенных на земле. Это объясняет его доступность и широкое применение. Однако, в чистом виде природа элемент человеку не дает. Алюминий приходится выделять из различных соединений. Больше всего 13-го элемента в бокситах. Это глиноподобные породы, сосредоточенные, в основном, в тропическом поясе.

Бокситы дробят, потом сушат, снова дробят и перемалывают в присутствии небольшого объема воды. Получается густая масса. Ее нагревают паром. При этом большая часть , коим бокситы тоже не бедны, испаряется. Остается оксид 13-го металла.

Его помещают в промышленные ванны. В них уже находится расплавленный криолит. Температура держится на отметке 950 градусов Цельсия. Нужен и электрический ток силой минимум в 400 кА. То есть, используется электролиз, как и 200 лет назад, когда элемент выделял Чарльз Холл.

Проходя через раскаленный раствор, ток разрывает связи между металлом и кислородом. В итоге, на дне ванн остается чистый алюминий. Реакции окончены. Завершает процесс отливание из осадка и их отправка потребителю, или же, использование для формирования различных сплавов.

Основные производства алюминия находятся там же, где и залежи бокситов. В передовика – Гвинея. В ее недрах скрыто почти 8 000 000 тонн 13-го элемента. На 2-ом месте Австралия с показателем в 6 000 000. В Бразилии алюминия уже в 2 раза меньше. Общемировые же запасы оцениваются в 29 000 000 тонн.

Цена алюминия

За тонну алюминия просят почти 1 500 долларов США. Таковы данные бирж цветных металлов на 20 января 2016-го. Стоимость устанавливается, в основном, промышленниками. Точнее, на цену алюминия влияет их спрос на сырье. Влияет на запросы поставщиков и стоимость электроэнергии, ведь производство 13-го элемента энергоемко.

Иные цены установлены на алюминия. Он идет на переплавку. Стоимость оглашается за килограмм, причем, имеет значение характер сдаваемого материала.

Так, за электротехнический металл дают примерно 70 рублей. За пищевой алюминий можно получить на 5-10 рублей меньше. Столько же платят за моторный металл. Если сдается разносортица, ее цена – 50-55 рублей за килограмм.

Самый дешевый вид лома – стружка алюминия. За нее удается выручить лишь 15-20 рублей. Чуть больше дадут за из 13-го элемента. Имеется в виду тара из-под напитков, консервов.

Невысоко ценят и алюминиевые радиаторы. Цена за килограмм лома – около 30-ти рублей. Это усредненные показатели. В разных регионах, на разных точках алюминий принимают дороже, либо дешевле. Нередко стоимость материалов зависит от сдаваемых объемов.


Close